Structural characterization of heat-treated activated carbon fibers

Author:

Rao A.M.,Fung A.W.P.,Dresselhaus M.S.,Endo M.

Abstract

Raman scattering, x-ray diffraction, and BET measurements are used to study the effect of heat treatment on the microstructure of activated carbon fibers (ACFs) and to correlate the structural changes with the metal-insulator transition observed in the electronic transport properties of heat-treated ACFs. A sequence of events is identified, starting with desorption, followed by micropore collapse plus the stacking of basic structural units in the c-direction, and ending up with in-plane crystallization. The graphitization process closely resembles that depicted by Oberlin's model, except that the final material at high-temperature heat treatment remains turbostratic. Because the metal-insulator transition was observed to occur at heat-treatment temperature THT ≃ 1200 °C, which is well below the THT value (2000 °C) for in-plane crystallization, we conclude that this electronic transition is not due to in-plane ordering but rather to the collapse of the micropore structure in the ACFs. Raman scattering also provides strong evidence for the presence of local two-dimensional graphene structures, which is the basis for the transport phenomena observed in heat-treated ACFs.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3