Shock-induced reaction synthesis (SRS) of nickel aluminides

Author:

Thadhani N.N.,Work S.,Graham R.A.,Hammetter W.F.

Abstract

Shock-induced chemical reactions between nickel and aluminum powders (mixed in Ni3Al stoichiometry) are used for the synthesis of nickel aluminides. It is shown that the extent of shock-induced chemical reactions and the nature of the shock-synthesized products are influenced by the morphology of the starting powders. Irregular (flaky type) and fine morphologies of the powders undergo complete reactions in contrast to partial reactions occurring in coarse and uniform morphology powders under identical shock loading conditions. Furthermore, irregular morphology powders result in the formation of the equiatomic (B2 phase) NiAl compound while the Ni3Al (L12 phase) compound is the reaction product with coarse and regular morphology powders. Shock-induced reaction synthesis can be characterized as a bulk reaction process involving an intense “mechanochemical” mechanism. It is a process in which shock compression induces fluid-like plastic flow and mixing, and enhances the reactivity due to the introduction of defects and cleansing of particle surfaces, which strongly influence the synthesis process.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical stimulation of gasless reaction in inorganic systems: A mini review;Progress in Energy and Combustion Science;2023-11

2. Synthesis of NiAl Intermetallic Compound under Shock-Wave Extrusion;Materials;2022-09-01

3. Shear localization in metallic materials at high strain rates;Progress in Materials Science;2021-06

4. Basic issues in explosion and other high-rate processing of materials;Explosion, Shock-wave and High-strain-rate Phenomena of Advanced Materials;2021

5. Ceramics from self-sustained reactions: Recent advances;Journal of the European Ceramic Society;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3