Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part I. Composition and structure analysis

Author:

Fox G.R.,Krupanidhi S.B.,More K.L.,Allard L.F.

Abstract

Material properties are greatly dependent upon the structure of the material. This paper, the first of three parts, discusses how composition influences the crystallographic structure and microstructure of lead lanthanum titanate (PLT) thin films grown by the multi-ion-beam reactive sputtering (MIBERS) technique. A transmission electron microscopy (TEM) study detailing the relationship between crystallographic texturing and microstructure development will be presented in a second paper. The dependence of the ferroelectric properties on observed crystallographic structure and microstructure is presented in the third paper of this series. As-deposited PLT microstructures coincide with the structure zone model (SZM) which has been developed to describe the microstructure of thin films deposited by physical vapor deposition. The as-deposited PLT structures are altered during post-deposition annealing as a result of crystallization and PbO evaporation. Amorphous films with more than 10 mole % excess PbO become polycrystalline with porous microstructures after annealing. When there is less PbO in the as-deposited film, 〈100〉 texture and dense structures are observed. Porosity results from PbO evaporation, and 〈100〉 texture is inhibited by excess PbO.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference50 articles.

1. 42PAD V diffractometer, Scintag, Santa Clara, CA.

2. Crystallization of nanometre-size coprecipitated PbTiO3 powders

3. 283-cm Ion Source, Commonwealth Scientific Corp., Alexandria, VA.

4. X-ray structure investigation of lanthanum modified lead titanate with A-site and B-site vacancies

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3