Growth mechanisms and near-interface structure in relation to orientation of MoS2 sputtered thin films

Author:

Moser J.,Lévy F.

Abstract

The growth of sputter-deposited MoS2 thin films is investigated by high-resolution transmission electron microscopy. Pure high-temperature grown films are compared with H2O-contaminated films and amorphous annealed films. In the first case, the films are oriented. They have a first interface layer with crystallites having their (002) planes parallel with the substrate. The subsequent growth leads to the already described lamellar structure, with flakes perpendicular to the substrate. This structure can be explained in terms of a local branching process during crystal growth. The orientation relations between the crystallites in the parallel layer and the lamellae are determined. The local structure at the root of the lamellae, as well as at the interface, is investigated by image calculation. Water contamination in the plasma is shown to result in an amorphization of the interfacial region, followed by lamellar growth. Amorphous films annealed under vacuum do not show a lamellar structure, but have isotropic crystallization. In each of these cases, the mechanism determining the film structure is different.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3