Abstract
Diamond-like carbon with silicon (DLC-Si) coatings formed by plasma-assisted chemical vapor deposition showed low friction coefficients of the order of 0.01 against steel without a lubricant, not only in dry atmosphere but also in humid atmosphere, where conventional DLC coatings showed higher friction coefficients of 0.1–0.2. DLC-Si coatings with 1 μm thickness deposited on steel were slid against steel using a conventional ball-on-disk type of apparatus to compare with a low friction mechanism of DLC-Si in dry and humid atmospheres. Analyses of wear scars indicated that formation and/or transfer of graphite-like carbon including hydrogen that originated in a DLC-Si coating occurred in dry atmosphere, while oxidation of contained silicon with water vapor formed silica-sol by sliding in humid atmosphere. The latter, peculiar to DLC-Si, was considered to cause the low friction coefficient in humid atmosphere through adsorbed water on silica.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献