Environmental embrittlement of γ titanium aluminide

Author:

Takasugi T.,Hanada S.,Yoshida M.

Abstract

The environmental embrittlement for the nearly stoichiometric TiAl compound, the microstructure of which consists of monophase γ with equiaxed grains, was evaluated by tensile tests, to determine the effects of the atmospheres used (vacuum, O2 gas, air, and H2 gas) and the testing temperatures (R.T. to 1173 K). At room temperature, the highest elongation and UTS values were observed in the samples tested in vacuum, while the worst values were observed in the samples tested in H2 gas. Transgranular cleavage fracture was dominant and primarily independent of the environmental media. At intermediate temperatures, the samples tested in vacuum exhibited higher elongation and UTS values than those tested in air. Intergranular fracture became more dominant as temperature increased but was insensitive to the environmental media. Based on these results, the mechanism responsible for the observed environmental embrittlement and the implications were discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference28 articles.

1. Hydrogen solubility in a titanium aluminide alloy

2. 7 Ronald T. , Summary Proc. of 2nd Workshop on Hydrogen-Materials Interactions, NASP Workshop Publ. 1004, NASA, Nov. (1988).

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3