A study of the mechanics of microindentation using finite elements

Author:

Laursen T.A.,Simo J.C.

Abstract

In this paper the finite element method is used to explore the mechanics of the microindentation process. In the simulations discussed, aluminum and silicon are investigated both in their bulk forms and in thin film-substrate combinations. Among the quantities readily computed using this approach and given in this paper are hardness (computed using actual contact area), contact stiffness, effective composite modulus, and surface profile under load. Importantly, this investigation builds on previous work by providing a more critical examination of the amount of pileup (or sink-in) around the indenter in the fully loaded configuration, as well as the variation of the actual contact area during indenter withdrawal. A key conclusion of this study is that finite element simulations do not support the widely used assumption of constancy of area during unloading (for either bulk materials or thin film systems). Furthermore, the amount of pileup or sink-in can be appreciable. The implication of these findings is that for many situations the commonly used straight-line extrapolation of a plastic depth may render an estimate for the contact area that is quite distinct from the actual area. This assertion is demonstrated herein through comparison of hardnesses calculated using actual contact area with values calculated using the straight-line extrapolation of plastic depth.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3