Morphological instabilities in the low pressure synthesis of diamond

Author:

Ravi K.V.

Abstract

Morphological instabilities attending the high growth rate of diamond films are examined. Pertinent literature on morphological instabilities and microstructure evolution in vapor deposited films is reviewed and theoretical treatments related to the case of diamond growth are discussed. Diamond films of various thicknesses have been synthesized utilizing the combustion flame synthesis technique involving diamond growth rates of ∼1 μm/min. Films of thicknesses under 20 μm are found to be dense and the surface smoothness of such films is governed by facets on the individual crystallites that make up the film. Increasing film thicknesses, at high growth rates, results in extremely rough surfaces, the trapping of voids and discontinuities, and the incorporation of non-diamond phases in the growing film. These characteristics are typical of morphological instabilities when surface diffusion and re-evaporation processes are absent and instability is promoted by the high rate arrival of the appropriate species from the flame ambient to the surface. Factors contributing to morphological instabilities include competitive shadowing and nutrient starvation and growth anisotropy of the different crystallographic faces on individual diamond crystals. It is shown that surface temperature and the presence of oxidizing species in the flame ambient contribute to anisotropic growth of diamond crystals and hence to morphological instabilities in diamond films. An approach to avoiding these instabilities is briefly discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference24 articles.

1. Thin-Film Growth and the Shadow Instability

2. Growth and Erosion of Thin Solid Films

3. The Commercialization Of Engineered Diamond Technology

4. Morphological stability analysis in chemical vapour deposition processes. I

5. 6. Ravi K. V. , Joshi A. , and Hu H. S. , Proc. 2nd Int. Conf. on The New Diamond Science and Technology, Washington, DC, 391 (1990).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3