Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids

Author:

Booske John H.,Cooper Reid F.,Dobson Ian

Abstract

Models for nonthermal effects on ionic motion during microwave heating of crystalline solids are considered to explain the anomolous reductions of activation energy for diffusion and the overall faster kinetics noted in microwave sintering experiments and other microwave processing studies. We propose that radiation energy couples into low (microwave) frequency elastic lattice oscillations, generating a nonthermal phonon distribution that enhances ion mobility and thus diffusion rates. Viewed in this manner, it is argued that the effect of the microwaves would not be to reduce the activation energy, but rather to make the use of a Boltzmann thermal model inappropriate for the inference of activation energy from sintering-rate or tracer-diffusion data. A highly simplified linear oscillator lattice model is used to qualitatively explore coupling from microwave photons to lattice oscillations. The linear mechanism possibilities include resonant coupling to weak-bond surface and point defect modes, and nonresonant coupling to zero-frequency displacement modes. Nonlinear mechanisms such as inverse Brillouin scattering are suggested for resonant coupling of electromagnetic and elastic traveling waves in crystalline solids. The models suggest that nonthermal effects should be more pronounced in polycrystalline (rather than single crystal) forms, and at elevated bulk temperatures.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference14 articles.

1. 14. Kimrey H. D. , Janney M. A. , and Becher P. F. , in Conf. Digest of 12th Int. Conf. Infrared and Millimeter Waves, IEEE Catalog No. 87CH2490–1 (IEEE, New York, 1987), pp. 136–137.

2. 13. Janney M. A. and Kimrey H. D. , Adv. Ceram. (1989).

3. 9. Goldstein H. , Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1980).

4. Localized vibrations of homogeneous anharmonic chains

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3