Author:
Daniel Whittenberger J.,Luton Michael J.
Abstract
Previous studies of a single lot of NiAl powder which had been ground under high intensity conditions in liquid nitrogen (cryomilling) indicated that this processing leads to a high strength, elevated temperature NiAl–AlN composite. Because this was the first known example of the use of the reaction milling process to produce a high temperature composite, the reproducibility of this technique was unknown. Two additional lots of NiAl powder and a lot of a Zr-doped NiAl powder have been cryomilled, and analyses indicate that AlN was formed within a NiAl matrix in all three cases. Compression testing between 1200 K and 1400 K has shown that the deformation resistance of these heats is similar to that of the first lot of NiAl–AlN; thus cryomilling can improve the creep resistance of NiAl by a factor of six. Based on this work, it is concluded that cryomilling of NiAl powder to form high temperature, high strength NiAl–AlN composites is a reproducible process.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献