Deposition and Characterization of PECVD SiOC Films by Using Bistrimethylsilylmethane (BTMSM) Precursor

Author:

Kim Yoon-Hae,Hwang Moo Sung,Lee Young,Kim Hyeong Joon

Abstract

ABSTRACTCarbon-containing silicon oxide (SiOC) is regarded as a potential low dielectric constant (low-κ) material for an interlayer dielectric (ILD) in next generation interconnection. In this study, we present the fundamental film properties and integration process compatibility of the low-κ SiOC film deposited by using bistrimethylsilylmethane (BTMSM) precursor. As more carbon was incorporated into film, both film density and dielectric constant decreased. The lowest κ-value, which we have obtained in this study, was 2.3 and the hardness of SiOC film was 1.1GPa as well as showing the thermal stability up to 500°C. In case of using conventional gases, organic components in SiOC film restricted etch rate. However, O2 addition could make it possible to obtaine a reasonable etch rate. The post-treatment of SiOC film in hydrogen plasma improved the resistance to O2 plasma in ashing process. The compatibility of SiOC film to the CMP process was also examined.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3