Enhancement of Adhesion Between Cu Thin Film and Polyimide Modified by Ion Assisted Reaction

Author:

Choi S. C.,Kim K. H.,Jung H-J.,Whang C. N.,Koha S. K.

Abstract

ABSTRACTPolyimide films are modified by ion assisted reaction method using various ion beams in various gases environments. Amount of ion and blown gases rate were changed from 5 × 1014 to 1 × 1017 and from 0 to 8 sccm, respectively. Wetting angles between water and polyimide films modified by Ar+ ion without oxygen blowing decrease from 67° to 400° and surface free energies increase from 46 to 64 dyne/cm2. Wetting angle of polyimide films modified by Ar+ ion in an oxygen environment decreases to 12° and surface free energy increases to 72 dyne/cm2. The lowest wetting angle was obtained by oxygen ion irradiation in the oxygen gas environment and its value was 7°. In the case of polyimide film modified by Ar+ ions in an oxygen environment, the wetting angle increases up to 65° when it kept in air and that increases up to 46° when it kept in water after 5 day. In the case of polyimide film modified by O2+ ion in oxygen environment, however, the wetting angle of polyimide film dose not increase. X-ray photoelectron analysis shows that the chemical bonds between polyimide components are severed by ion irradiation and hydrophilic groups such as CO and C=O are formed by the reaction between newly formed radicals and blown oxygen. It was found that adhesion between Cu and polyimide modified by ion assisted reaction was improved. The main reason of the enhanced adhesion is due to the reaction between Cu and C-O or C=O groups formed by ion assisted reaction on the polyimide surface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference18 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3