Glass Development for Vitrification of Wet Intermediate Level Waste (WILW) from Decommissionning of the Hinkley Point ‘A’ Site

Author:

Bingham Paul A,Hyatt Neil C,Hand Russell J,Wilding Christopher R

Abstract

AbstractThe Immobilisation Science Laboratory, University of Sheffield, is working with Magnox South Ltd to develop a range of glass formulations that are suitable for vitrification of the Wet Intermediate Level Waste (WILW) envelope arising from decommissioning of the Hinkley Point ‘A’ (HPA) power station. Four waste mixtures or permutations are under consideration for volume reduction and immobilisation by vitrification. The inorganic fractions of several of the wastes are suitable for vitrification as they largely consist of SiO2, MgO, Fe2O3, Na2O, Al2O3 and CaO. However, difficulties may arise from the high organic and sulphurous contents of certain waste streams, particularly spent ion exchange (IEX) resins. IEX resin wastes may be the key factor in limiting waste loading, and possible thermal pretreatments of IEX resin to decrease C and S contents prior to vitrification have been investigated. Our results suggest that lowtemperature (90 °C) pretreatment is more favourable than hightemperature (250, 450, 1000 °C) pretreatment. A thorough desktop study has provided initial candidate glass compositions which have been downselected on the basis of glass forming ability, melting temperature, viscosity, liquidus temperature, chemical durability and potential sulphate capacity. Early results for two of the candidate glass formulations indicate that formation of an amorphous product with at least 35 wt % (dry waste) loading is achievable for HPA IEX resin wastes.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference15 articles.

1. 1. Generic Waste Package Specification, Vol. 1: Specification, Nirex Report N/104, June 2005; http://www.nda.gov.uk/documents/upload/Generic-waste-package-specification-2005.pdf

2. Waste minimization pretreatment via pyrolysis and oxidative pyroylsis of organic ion exchange resin

3. Sulfur behavior in silicate glasses and melts: Implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V2O5 content

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3