Lattice-Gas-Decomposition Model for Vacancy Formation Correlated with B2 Atomic Ordering in Intermetallics

Author:

Biborski A.,Zosiak L.,Kozubski R.,Pierron-Bohnes V.

Abstract

AbstractThermal vacancy formation correlated with atomic ordering was modelled in B2-ordering A-B binary intermetallics. Ising Hamiltonian was implemented with a specific thermodynamic formalism for thermal vacancy formation based on the phase equilibria in a lattice gas composed of atoms and vacancies. Extensive calculations within the Bragg-Williams approximation [1] were followed by Semi-Grand Canonical Monte Carlo (SGCMC) simulations. It has been demonstrated that for the atomic pair-interaction energies favouring vacancy formation on A-atom sublattice, equilibrium concentrations of vacancies and antisite defects result mutually proportional in well defined temperature ranges. The effect observed both in stoichiometric and non-stoichiometric (both A-rich and B-rich) binary alloys was interpreted as a tendency for triple defect formation. In B-rich alloys vacancy concentration did not extrapolate to zero at 0 K, which indicated the formation of constitutional vacancies. Energetic conditions for the occurrence of the effects were analysed in detail. The modelled temperature dependence of vacancy concentration in the B2-ordering A-B binaries with triple defects will be included in the Kinetic Monte Carlo (KMC) simulations of chemical ordering kinetics in these systems with reference to the experimental results obtained for NiAl [2].

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3