Ordered Structure in GalnP/AIGalnP Quantum Wells and p-Doped Multiquantum Well AIGalnp Laser Diodes

Author:

Tanaka Toshiaki,Yanagisawa Hironori,Yano Shin-Ichiro,Minagawa Shigekazu

Abstract

ABSTRACTZinc doping is performed on the GalnP/AIGalnP multiquantum well (MQW) structure with the aim of dissolving the ordered atomic arrangement which results in higher quantum levels and therefore shorter lasing wavelengths. It is shown that the photoluminescence (PL) peak wavelength gradually shortens with doping and decreases by 20 nm when the hole concentration reaches 1×1018 cm−3, while the PL relative intensity becomes half that of an undoped MQW layer. Therefore, a moderate level of zinc doping of around 4∼5×1017 cm−3 is desirable to shorten the PL wavelength without decreasing the crystal quality. Transmission electron nano-diffraction patterns confirm that the ordered structure in the MQW layers disappears as the hole concentration increases. On the basis of this data, uniformly p-doped and modulation p-doped MQW laser diodes are fabricated and their characteristics are compared with the undoped MQW lasers. CW operation is achieved at wavelengths of 631 to 633 nm, which is 10 nm shorter than the 643 nm in an undoped MQW laser. Comparatively low threshold currents of 73 and 88 mA are attained for uniformly p-doped and modulation p-doped MQW lasers, respectively. However, they are about 20∼30 mA higher than those of the undoped MQW lasers. This results from the large overflow of electrons from the active layer, and the fact that the differential gain becomes smaller in the 630-nm band.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3