Study of Transport Through Low-Temperature GaAs Surface Insulator Layers

Author:

Ibbetson J. P.,Yin L.-W.,Hashemi M.,Gossard A. C.,Mishra U. K.

Abstract

ABSTRACTSince epilayers of GaAs grown at low substrate temperature (LTGaAs) and annealed at 600°C were first demonstrated to be an effective buffer layer for eliminating backgating effects, the material properties and electronic characteristics of bulk LTGaAs have been actively investigated. Less attention has been paid to thin layers of LTGaAs (∼2000Å), although these have been shown to improve gate-to-drain breakdown characteristics when incorporated as the surface insulator layer in GaAs MISFET's. In bulk LTGaAs that has been annealed for 10 minutes at 600°C, the formation of arsenic precipitates with a density of 1018 cm-3 has been observed. These are considered to be at least partially responsible for the high resistivity of LTGaAs2. While the exact mechanism of precipitate formation is currently unknown, it would seem reasonable to expect the availability of the growth surface to have a significant effect on any defect redistribution during the anneal. This surface effect would become increasingly apparent as the LTGaAs layer thickness was decreased. It is desirable for MISFET applications that the LTGaAs gate insulator layer be as thin as possible, whilst maintaining high breakdown, in order to maximize device transconductance. To achieve this, it is important to understand how the observed bulk features (such as ∼60Å size arsenic precipitates) are affected in thin LTGaAs layers

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

1. 6. Ibbetson J.P. , Yin L.-W. , Hashemi M. , Gossard A.C. , and Mishra U.K. , submitted to Appl. Phys. Lett.

2. New MBE buffer used to eliminate backgating in GaAs MESFETs

3. 5. Yin L.-W. , Ibbetson J. , Hashemi M.M. , Jiang W. , Hu S.-Y. , Gossard A.C. , and Mishra U.K. , presented at the 1991 Mat. Res. Soc. Fall Meeting, symposium F, Boston, MA, 1991.

4. Structural properties of As‐rich GaAs grown by molecular beam epitaxy at low temperatures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3