Time-Resolved and Nicrostructural Studies of Solidification in Undercooled Liquid Silicon

Author:

Lowndes D. H.,Pennycook S. J.,Wood R. F.,Jellison G. E.,Withrow S. P.

Abstract

ABSTRACTNanosecond resolution visible (633 nm) and near-infrared (1152 nm) reflectivity measurements have been used, together with transmission electronmicroscopy (TEM), to study pulsed KrF (248 nm) laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) silicon layers. The measurements cover the entire laser energy density (El) range between the onset of melting (∼ 0.12 J/cm2) and the completion of epitaxial crystallization (∼1.1 J/cm2). Four distinct El-regimes of melting and solidification are found for the 410-nm thick a-Si layers. For El > 0.25 J/cm2, the time of formation, velocity and final depth of “explosively” propagating undercooled liquid layers were measured in specimens that had been uniformly implanted with Si, Ge, or Cu. TEM shows that the “fine-grained polycrystalline Si” produced by explosive crystallization (XC) actually contains large numbers of disk-shaped Si flakes that have largely amorphous centers and are visible only in plan view. The optical and TEM measurements suggest (1) that flakes are the crystallization events that initiate XC, and (2) that lateral heat flow (parallel to the sample surface) must be taken into account in order to understand flake formation. Results of new two-dimensional (2-D) model calculations of heat flow and solidification are presented. These calculations confirm the importance of 2-D heat flow and crystallite growth early in the solidification process. For 0.3 4 < El > 1.0 J/cm2, pronounced changes in both the shape and the duration of the reflectivity signals provide information about the growth of polycrystalline grains; this information can be correlated with post-irradiation plan and cross-section view TEM microstructural measurements.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3