Measurement of Piezoelectric Transverse and Longitudinal Displacement with Atomic Force Microscopy for PZT Thick Films

Author:

Kashiwagi Yuta,Iijima Takashi,Aiso Toru,Yamamoto Takashi,Nishida Ken,Funakubo Hiroshi,Nakajima Takashi,Okamura Soichiro

Abstract

ABSTRACTThe actual transverse and longitudinal displacement of PZT thick film was measured using a newly developed atomic force microscopy (AFM). The AFM is attached a feedback circuit named “torsion feedback”. The torsion and Z-height feedback circuits control an AFM cantilever to follow piezoelectric deformation of the sample. To measure transverse displacement, the cantilever contacts the edge of sample. The transverse displacement is determined from the torsion feedback signal absolutely. To measure longitudinal displacement, the cantilever contacts the center of sample. The longitudinal displacement is determined from Z-height feedback signal absolutely. A 5-μm-thick PZT film was prepared on Pt/Ti/SiO2/Si substrates. The film sample was shaped square pillar. The side electrode length (L) of square pillar shaped sample was ranged from 1000 μm to 10 μm. The relation between side electrode length and the transverse or the longitudinal displacements were investigated. With decreasing L, the transverse displacement decreased nonlinearly, and the longitudinal displacement increased nonlinearly. The finite element method (FEM) simulation suggests that the substrate clamped PZT film behaved nonlinearly. The effective -d31 and d33 were calculated from the measured displacement, and these values increase with decreasing L. The effective d33 and -d31 showed correlation, and the ratio was d33 : -d31 = 5.3 : 1 , whereas the bulk ratiois d33 : -d31 = 2.4 : 1.This result suggests that the substrate clamping effect of the transverse displacement was larger than that of the longitudinal displacement.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3