Probing the metal gate high k interactions by backside XPS and C-AFM

Author:

Celano U.,Conard T.,Hantschel T.,Vandervorst W.

Abstract

ABSTRACTThe metal gate high k interaction is one of the dominant processes influencing the electrical performance (Vt, charge accumulation,..) of advanced gate stacks. These interactions are influenced by the entire thermal budget and the presence of reactive elements (on top/ within the material gate) such that relevant measurements can only be performed after a full processing cycle and on a complete gate stack.In such cases the relevant metal gate high k interface is a buried interface located below the metal gate (+ Si cap) and is not accessible for standard characterization methods like x-ray photoemission spectroscopy (XPS) due the limited escape depth of the photoelectrons. Moreover the presence of a conductive metal gate prevents the application of techniques such as conductive atomic force microscopy (C-AFM), to probe the local distribution of the defects, trapping sites and local degradation upon stressing. XPS in combination with layer removal steps like ion beam sputtering will destroy the bonding information and is thus not applicable. Chemical etching of the metal gate stack prior to the XPS measurements requires an extremely precious control of the etching in order to stop 1-2 nm before the high k metal interface.As an alternative we have developed a backside removal approach, that allows us to investigate using techniques such as XPS and C-AFM, the metal gate high k interface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3