Charge transport in ambipolar pentacene thin film transistors

Author:

Rahimi Ronak,Korakakis D.

Abstract

ABSTRACTAmbipolar organic transistors are technologically interesting because of their potential applications in light-emitting field-effect transistors [1] and complementary-metal-oxide-semiconductor (CMOS) devices by providing ease of design, low cost of fabrication, and flexibility [2]. Although common organic semiconductors show either n- or p-type charge transport characteristic, organic transistors with ambipolar characteristics have been reported recently. In this work, we show that ambipolar transport can be achieved within a single transistor channel using LiF gate dielectric in the transistors with pentacene active layer. This ambipolar behavior can be controlled by the applied source-drain and gate biases. It was found that at low source-drain biases multistep hopping is the dominant conduction mechanism, while in high voltage regimes I-V data fits in Fowler-Nordheim (F-N) tunneling model. From the slope of the F-N plots, the dependency between field enhancement factor and the transition point in conduction mechanism upon gate bias has been extracted. The transition points show more dependency on gate voltage for negative biases compared to the positive biases. While sweeping negative gate voltages from -5 to -20 V, the source-drain voltages change from about 27 to 17 V. On the other hand, for positive gate voltages from 5 to 20 V, the value of the transition point stays at approximately 36 V. In order to further understand the transport mechanisms, new structures with an interface layer between dielectric and active layer have been fabricated and characterized. As expected, a significant decrease in the amount of the source-drain current has been observed after introducing the interface layer.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3