Precise Absorbent ink Deposition and Optical Inspection System

Author:

Willert Andreas,Lucas Joerg,Sowade Enrico,Rahnfeld Christian,Heilmann Andreas,Baumann Reinhard R.

Abstract

ABSTRACTFoils from the ethylene-tetrafluoroethylene (ETFE) copolymer are used as transparent, humidity resistant and UV-stabile facade and roof coverings, e.g. for stadia, indoor swimming pools or greenhouses [1]. With pneumatically supported cushions, large translucent structures can be realized. Until now, they are assembled through a thermal welding process [2]. The development of welding techniques using laser irradiation is under way.Laser welding of transparent polymer foils requires an optical absorber placed in the interface between the two welding pairs. Usually, dye molecules with absorption properties adapted to the laser wavelength are used as absorbers. At a well-defined temperature, the dye molecules will be chemically modified, and transparent laser welding seams can be achieved. To get reproducible laser welding results, a homogenous layer of absorbent molecules or materials at the welding interface have to be realized, which is often very hard to achieve by wet deposition of dye molecules dispersed in a solution.In our contribution, we report on an inkjet printing system that can be mounted on a R2R manufacturing setup. The main challenge to this approach is to find the right ink that is compatible with this highly hydrophobic ETFE foil. Therefore, both the pretreatment of the substrate as well as the utilization of different inkjet technologies are dealt with in this contribution. It is demonstrated that the inkjet printing of a laser absorbent ink in a defined way onto the substrate is possible.For quality assurance, an optical inspection system has been developed to ensure a proper deposition of material. This ensures the quality control for the inkjet printing process of the special functional material. In that part the results of the comparison of the use of a dedicated 14‑bit grey level CCD line camera is compared to a high quality webcam.Laser irradiation of the foil with printed laser absorbent lines together with the untreated joining partner was performed by a continuous wave diode laser at a wavelength of 808 nm using a defocused laser spot. A nearly transparent welding seam was achieved. Mechanical tensile tests of the laser welding seams have demonstrated that their tensile strength is comparable to conventional thermal welding seams.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. Understanding organofluorine chemistry. An introduction to the C–F bond

2. 3. Tanno S. , “ETFE foil cushions as an alternative to glass for atriums and rooflights.”, International Conference on Building, Envelope Systems and Technologys (ICBEST) 97 Conference, CWCT, Bath, UK (1997)

3. The Polar Hydrophobicity of Fluorinated Compounds

4. Bauen mit ETFE-Folien – Ein Praxisbericht

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3