Performance evaluation of neutron detectors incorporating intrinsic Gd using a GEANT4 modeling approach

Author:

Bickley Abigail A.,Young Christopher,Thomas Benjamin,McClory John W.,Dowben Peter A.,Petrosky James C.

Abstract

ABSTRACTSolid-state neutron detectors from heterostructures that incorporate Gd intrinsically or as a dopant may significantly benefit from the high thermal neutron capture cross section of gadolinium. Semiconducting devices with Gd atoms can act as a neutron capture medium and simultaneously detect the electronic signal that characterizes the interaction. Neutron capture in natural isotopic abundance gadolinium predominantly occurs via the formation of 158mGd, which decays to the ground state through the emission of high-energy gamma rays and an internal conversion electron. Detection of the internal conversion electron and/or the subsequent Auger electron emission provides a distinct and identifiable signature that neutron capture has occurred. Ensuring that the medium responds to these emissions is imperative to maximizing the efficiency and separating out other interactions from the radiation environment. A GEANT4 model, which includes incorporation of the nuclear structure of Gd, has been constructed to simulate the expected device behavior. This model allows the energy deposited from the decay of the meta-stable state to be localized and transported, providing for analysis of various device parameters. Device fabrication has been completed for Gd doped HfO2 on n-type silicon, Gd2O3 on p-type silicon and Gd2O3 on SiC for validation of the code. A preliminary evaluation of neutron detection capabilities of these devices using a GEANT4 modeling approach is presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference20 articles.

1. 16. GEANT4 Collaboration, “Physics Reference Manual geant4.9.4”, released December 2010, p 499. Available: http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf

2. Nuclear Data Sheets for A=158

3. 8. Thomas B. , “Neutron Detection Using Gadolinium-Based Diodes,” MS thesis, Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, OH, 2011.

4. 7. Monte-Carlo Simulation of Electron Trajectory in Solids (CASINO), accessed August 2009. Available: http://www.gel.usherbrooke.ca/casino/index.html.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3