Growth and In-line Characterization of Silicon Nanodots Integrated in Discrete Charge Trapping Non-volatile Memories

Author:

Amouroux J.,Della Marca V.,Petit E.,Deleruyelle D.,Putero M.,Muller Ch.,Boivin P.,Jalaguier E.,Colonna J-P.,Maillot P.,Fares L.

Abstract

ABSTRACTNon-Volatile Memories (NVM) integrating silicon nanodots (noted SDs) are considered as an emerging solution to extend Flash memories downscaling. In this alternative memory technology, silicon nanocrystals act as discrete traps for injected charges.Si-dots were grown by Low Pressure Chemical Vapor Deposition (LPCVD) on top of tunnel oxide. Depending on the pre-growth surface treatment, tunnel oxide surface may present either siloxane or silanol groups. SDs deposition relies on a 2–steps process: nucleation by SiH4 and selective growth with SiH2Cl2.In a context of technological industrialization, it is of primary importance to develop in-line metrology tools dedicated to Si-dots growth process control. Hence, silicon-dots were observed in top view by using an in-line Critical Dimension Scanning Electron Microscopy CDSEM and their average size and density were extracted from image processing. In addition, Haze measurement, generally used for bare silicon surface characterization, was customized to quantify Si-dots deposition uniformity over the wafer. Finally, Haze value was correlated to Si nanodots density and size determined by CDSEM.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3