Copper Indium Diselenide thin films using a hybrid method of chemical bath deposition and thermal evaporation

Author:

Ornelas A R. Ernesto,Shaji Sadasivan,Arato Omar,Avellaneda David,Castillo Alan,Das Roy Tushar Kanti,Krishnan Bindu

Abstract

ABSTRACTCopper indium diselenide (CIS) based solar cells are one among the promising thin film solar cells. Most of the processes reported for the preparation of CIS directly or indirectly involve Se vapor or H2Se gases which are extremely toxic to health and environment. In this work, we report the preparation of CIS thin films by stacked layers of Glass/In/Se/Cu2Se and Glass/In/Se/Cu2Se/Se. For this, first indium (In) thin film was thermally evaporated on glass substrate on which selenium (Se) and copper selenide (Cu2Se) thin films were deposited sequentially by chemical bath deposition. Selenium thin films were grown from an aqueous solution containing Na2SeSO3 and CH3COOH at room temperature, triple deposition for 7, 7 and 10 min from consecutive baths. Copper selenide thin films were deposited at 35 °C for 1 hour from an aqueous bath containing CuSO4, Na2SeSO3 and NH4OH. Analysis of the X-ray diffraction patterns of the thin films formed at 400 °C from the precursor layer containing extra selenium layer showed the presence of chalcopyrite CuInSe2, without any secondary phase. Morphology of all the samples was analyzed using Scanning Electron Microscopy. Optical band gap was evaluated from the UV-Visible absorption spectra of these films and the values were 1.1 eV and 1 eV respectively for CIS thin films formed at 400 °C from the selenium deficient and selenium rich precursor layers. Electrical characterizations were done using photocurrent measurements. Thus preparation of a CuInSe2 absorber material by a non-toxic selenization process may open up a low cost technique for the fabrication of CIS based solar cells.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3