Author:
Song Young J.,Lee Hak-Gyu,Teng Lihong,Anderson Wayne A.
Abstract
AbstractMicrowave chemical vapor deposition (MCVD) is utilized to deposit nanocrystalline silicon (nc-si) thin films onto a variety of substrates for application to thin film transistors (TFT's) and solar cells. It is especially important to gain reproducible control of the processing. Thus, an in-situ mass spectrometer (MS) records the plasma conditions with variation of process conditions such as gas selection, pressures, partial pressures, and substrate temperature. These data are correlated with electrical and optical properties of the films. Raman spectra show a FWHM of 11/cm with position at 522/cm as desired for crystalline Si. Typical film thickness is 100nm with grain size of 20-30 nm, using standard deposition, and 50-80 nm when the substrate is intensely optically illuminated during deposition, called photon assist (PA). Hydrogen dilution serves to increase the crystallinity of the films. The ratio of photo-to dark conductivity exceeds 10+5 with dark conductivity as low as 1.5 × 10-10 S/cm. Thin film transistors have been fabricated with Ion/Ioff of 10+7. Hetrojunction solar cells were fabricated using amorphous Si/ nc-Si/ crystlline Si giving a conversion efficiency of above 10.5%, without an antireflection coating. The use of MS in device design will be emphasized.
Publisher
Springer Science and Business Media LLC