Author:
Pasternak Moshe P.,Xu W. M.,Rozenberg G. Kh.,Taylor R. D.
Abstract
AbstractAt ambient pressure the orthorhombic perovskites R-orthoferrites (R Ξ Lu, Eu, Y, Pr, and La) exhibit very large optical gaps. These large- gap Mott insulators in which the 3d5 high-spin ferric ions carry large local moments and magnetically order at TN > 600 K, undergo a sluggish structural first-order phase transition in the 30-50 GPa range, with the exception of the LuFeO3 which undergoes an isostructural volume reduction resulting from a high to low-spin crossover. High-pressure methods to 170 GPa using Mossbauer spectroscopy, resistance, and synchrotronbased XRD in diamond anvil cells were applied. Following the quasi-isostructural volume reduction (3-5%) the new phase the magnetic-ordering temperature is drastically reduced, to ∼ 100 K, the direct and super-exchange interactions are drastically weakened, and the charge-transfer gap is substantially reduced. The high-pressure (HP) phases of the La and Pr oxides, at their inception, are composed of high- and low-spin Fe3+ magnetic sublattices, the abundance of the latter increasing with pressure but HP phases of the Eu, Y, and Lu oxides consist solely of low-spin Fe3+. Resistance and Mössbauer studies in La and Pr orthoferrites reveal the onset of a metallic state with moments starting at P > 120 GPa. Based on the magnetic and electrical data of the latter species, a Mott phase diagram was established.
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Mössbauer Studies ofFe57in Orthoferrites
2. Magnetic and transport studies of pureV2O3under pressure
3. The IS in 57Fe is proportional to the negative value of the s-electron density at the nucleus ρs(0). Decrease in IS is concomitant to the increase in ρs(0), e.g., in the density at and around the Fe ion.
4. A multipurpose miniature piston-cylinder diamond-anvil cell for pressures beyond 100 GPa
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献