Electronic, Magnetic and Structural Properties of the RFeO3 Antiferromagnetic-Perovskites at Very High Pressures

Author:

Pasternak Moshe P.,Xu W. M.,Rozenberg G. Kh.,Taylor R. D.

Abstract

AbstractAt ambient pressure the orthorhombic perovskites R-orthoferrites (R Ξ Lu, Eu, Y, Pr, and La) exhibit very large optical gaps. These large- gap Mott insulators in which the 3d5 high-spin ferric ions carry large local moments and magnetically order at TN > 600 K, undergo a sluggish structural first-order phase transition in the 30-50 GPa range, with the exception of the LuFeO3 which undergoes an isostructural volume reduction resulting from a high to low-spin crossover. High-pressure methods to 170 GPa using Mossbauer spectroscopy, resistance, and synchrotronbased XRD in diamond anvil cells were applied. Following the quasi-isostructural volume reduction (3-5%) the new phase the magnetic-ordering temperature is drastically reduced, to ∼ 100 K, the direct and super-exchange interactions are drastically weakened, and the charge-transfer gap is substantially reduced. The high-pressure (HP) phases of the La and Pr oxides, at their inception, are composed of high- and low-spin Fe3+ magnetic sublattices, the abundance of the latter increasing with pressure but HP phases of the Eu, Y, and Lu oxides consist solely of low-spin Fe3+. Resistance and Mössbauer studies in La and Pr orthoferrites reveal the onset of a metallic state with moments starting at P > 120 GPa. Based on the magnetic and electrical data of the latter species, a Mott phase diagram was established.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference13 articles.

1. Mössbauer Studies ofFe57in Orthoferrites

2. Magnetic and transport studies of pureV2O3under pressure

3. The IS in 57Fe is proportional to the negative value of the s-electron density at the nucleus ρs(0). Decrease in IS is concomitant to the increase in ρs(0), e.g., in the density at and around the Fe ion.

4. A multipurpose miniature piston-cylinder diamond-anvil cell for pressures beyond 100 GPa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3