Author:
Elliott B. R.,Host J. J.,Dravid V. P.,Teng M. H.,Hwang J-H.
Abstract
New and modified mechanisms are proposed to account for detailed observations of carbon encapsulation of Fe, Ni, and Co nanocrystals. The mechanisms are based on aerosol and gas phase chemistry and on the catalytic effects of transition metals. Two parameters are found to qualitatively dominate production: the local-path carbon-to-metal ratio (LCM) and the global carbon-to-metal ratio (GCM). LCM's select which mechanisms are active along each pathway within the reactor. The GCM places bounds upon and determines the weighting between different LCM's and thus determines the distribution of different nanoscale products within the collected, macroscopic product. A two part processing parameter → mechanism → product map links the components. The generality of the model is discussed throughout with reference to related processes and the encapsulation of other materials.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献