A novel polymer electrolyte based on oligo(ethylene glycol) 600, K2PdCl4, and K3Fe(CN)6

Author:

Di Noto Vito

Abstract

New electrolytic systems were prepared by reacting K3Fe(CN)6 and K2PdCl4 in a mixture of water and poly(ethylene glycol) 600 (PEG). The reaction occurs in two steps: first a gel is formed, which then shrinks, releasing the solvent. The product thus obtained has the consistency of a smooth, solid plastic paste and is very stable. The influence of the reaction mixture on the structure, morphology, and conductivity of the products was investigated carrying out three preparations (I, II, III) at increasing ratio PEG 600/H2O. By FT-IR studies and analytical data it was concluded that these materials are inorganic-organic networks containing CN bridges between Fe and Pd atoms and PEG 600 bridges between Pd atoms. Scanning electron microscopy studies revealed that the morphology of polymers I, II, and III is significantly influenced by the conditions of the synthesis. Conductivity measurements made at different temperatures showed that polymers I, II, and III conduct ionically. The conductivity of polymer I, which was synthesized with the highest water/PEG 600 ratio, is on the order of 1.4 · 10−3 Sycm at 25 °C.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3