Author:
Lee Wei-Chang,Chung Shyan-Lung
Abstract
A combustion synthesis (SHS) process has been developed for the synthesis of Si3N4 powder under low nitrogen pressures. Si and NaN3 powders were used as the reactants, and NH4Cl powder was added as a catalytic agent. These powders were mixed and pressed into a cylindrical compact. The compact was wrapped up with an igniting agent (i.e., Ti + C), and the synthesis reaction was triggered by the combustion of the igniting agent. Addition of NH4Cl was found necessary for the combustion synthesis reaction under low nitrogen pressures (< 1.2 MPa). The product as synthesized is mostly in the form of agglomerated fine particles (0.1–1 μm in diameter) and is composed mainly of α-phase and a minor amount of β-phase. Effects of various experimental parameters (N2 pressure, NaN3, NH4Cl, and Si3N4 contents) on the product conversion and the combustion temperature were investigated. A possible reaction mechanism was proposed that explains the effects of the experimental parameters on the synthesis reaction.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献