Author:
Wada Takahiro,Kohara Naoki,Negami Takayuki,Nishitani Mikihiko
Abstract
A Cu-rich CuInSe2 (CIS) thin film with an atomic ratio of Cu/In = 3.6 was characterized using high-resolution and analytical transmission electron microscopy (TEM). The film was deposited on a Mo coated soda-lime glass substrate by physical vapor deposition. Rutherford backscattering spectroscopy (RBS) and Auger electron spectroscopy (AES) showed that a secondary impurity phase such as Cu2Se segregated on the CIS surface. The three-dimensional crystallographic relationship between the Cu2Se and CIS was found to be (111)Cu2Se (111)CIS and [011]Cu2Se || [011]CIS where the Cu2Se and CIS had pseudocubic structures with a = 5.8 Å and a = 11.6 Å, respectively. CuPt type CIS could be observed near the interface between the Cu2Se and CIS. A growth model of CIS crystals under Cu and Se excess condition is proposed based on the results of TEM. The characteristics of the CIS growth model in Cu-rich CIS film are summarized as follows: (i) CIS crystals are produced from Cu2Se crystals by a “topotactic reaction,” and (ii) sphalerite and/or CuPt type CIS are produced first after the reaction, and (iii) the metastable sphalerite and/or CuPt type CIS is then transformed to the stable chalcopyrite CIS phase.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献