Characterization of nanophase titania particles synthesized using in situ steric stabilization

Author:

Gaynor A. G.,Gonzalez R. J.,Davis R. M.,Zallen R.

Abstract

Ultrafine titania particles were synthesized from titanium tetraethoxide (TEOT) dissolved in ethanol. The concentration of water and of the soluble polymer hydroxypropylcellulose (HPC) were varied to control particle size. The HPC adsorbed onto the titania particles during growth, providing a steric barrier to aggregation. Electron microscopy showed that particles smaller than 70 nm were formed at high water concentrations (R > 120 where R is the molar ratio [H2O]/[TEOT]) and in the presence of HPC. The annealing-induced, phase-transformation behavior of these particles (amorphous → anatase → rutile) from 100 to 1000 °C was characterized by x-ray, Raman, and infrared techniques. The conversion of anatase to rutile occurred more readily for particles made at high water concentrations and with HPC. For particles formed by premixing TEOT with HPC prior to hydrolysis at R = 155, an 800 °C anneal yielded a rutile fraction exceeding 95%; particles made at R = 5.5 with no HPC showed negligible conversion at this temperature.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3