Influence of texture on the switching behavior of Pb(Zr0.70Ti0.30)O3 sol-gel derived thin films

Author:

Brooks Keith G.,Klissurska Radosveta D.,Moeckli Pedro,Setter N.

Abstract

Rhombohedral Pb(Zr0.70Ti0.30)O3 thin films of four different well-defined textures, namely, (100), (111), bimodal (110)/(111), and (100)/(111), were prepared by a sol-gel method. The films were characterized in terms of grain size, presence of second phases, surface roughness, columnarity of grains, and other microstructural features. The dielectric, ferroelectric, and fatigue properties were investigated, with emphasis on the hysteresis switching characteristics. Results are discussed from the reference point of the allowable spontaneous polarization directions available for the different textures. The values of coercive field, remanent and saturation polarization, and slope of the loop at the coercive field, at saturating fields can be qualitatively explained based on the texture, independent of microstructural differences. The occurrence of surface pyrochlore, however, is observed to affect the functionality of the saturation curves, particularly for the samples of bimodal texture. Shearing of the hysteresis curves of the bimodal films is also attributed to surface microstructural features. The occurrence of nonswitching 71° or 109° domains in the (111) and (110)/(111) textured films is hypothesized based on a comparison with the data from the (100) textured film. Corrected saturation polarization values agree with the spontaneous polarization values of rhombohedral PZT single crystals and published calculated values for rhombohedral PZT ceramics. The fatigue characteristics show increases in the switching component of polarization in the range 103−107 bipolar cycles, particularly for the (111) textured sample. Onset of fatigue is observed for all samples between 107 and 108 switching cycles.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3