Percolative composite model for prediction of the properties of nanocrystalline materials

Author:

Chaim Rachman

Abstract

A physical percolating composite model is presented for description of the changes in the transport-type properties with grain size in nanocrystalline materials. The model is based on hierarchial percolation through the different microstructural components such as grain boundaries, triple lines, and quadruple nodes at grain sizes when their respective percolation thresholds are reached. The model yields critical grain sizes at which the properties may change significantly. These grain sizes depend on the grain boundary thickness. Master curves were calculated for the elastic modulus and compared to the experimental data from the literature. Better fit was found with the experimental data in comparison to Hill's approximation model. The critical grain size at grain boundary percolation threshold is suggested as a criterion for definition of materials to exhibit nanocrystalline properties.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3