Determination of local high-frequency dielectric function during the cubic-to-tetragonal phase transformation in barium titanate

Author:

Katti Kalpana S.,Qian Maoxu,Sarikaya Mehmet,Miyayama Masuru

Abstract

Transmission electron energy loss spectroscopy was used to obtain local dielectric properties in barium titanate. The high frequency dielectric function of the material was studied dynamically during the cubic-to-tetragonal (ct) phase transformation in conjunction with the effect of a small amount (0.9%) of donor dopant (niobium). In order to obtain the local dielectric function during the phase transformation, Kramers–Kronig relations were applied to the energy loss measurements. The optical excitations in the energy loss spectra were consistent with band structure results from the literature. The Re (1/∈), real part of the inverse dielectric function, obtained from the energy loss data indicated a change at the phase transformation. Specifically, a broadening of the valence plasmon excitation is observed which is attributed to the order-disorder nature of the tc transformation. A 0.4 eV shift in the volume plasmon was observed in the Nb-doped sample in all regions (within grains as well as at grain boundaries), indicating a uniform incorporation of the dopant in the lattice. In this paper, the changes in the dielectric function, such as shifts in collective excitations, are attributed to a large contribution from loosely bound Nb electrons. Furthermore, it is demonstrated that it is possible to obtain local (≈10 nm) physical property of a complex material dynamically at relatively high temperature.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference32 articles.

1. Photorefractive Materials;MRS Bull.,1994

2. Crystal Engineering of High Tc-Related Oxide Films;MRS Bull.,1994

3. Semiconducting Nanocrystals;MRS Bull.,1995

4. Magnetism and Magnetic Materials;MRS Bull.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3