Surface composites: A new class of engineered materials

Author:

Singh Rajiv,Fitz-Gerald James

Abstract

To integrate irreconcilable material properties into a single component, a new class of engineered materials termed “surface composites” has been developed. In this engineered material, the second phase is spatially distributed in the near surface regions, such that the phase composition is linearly graded as a function of distance from the surface. Surface composites are different from existing engineered materials such as “bulk composites” and “functionally graded materials” (FGM). Unlike bulk composites, the surface phase in surface composites is present only at the near surface regions. In contrast to FGM, the graded properties of surface composites are achieved by unique morphological surface modification of the bulk phase. To fabricate surface composites, the initial surface of the bulk material is transformed using a novel multiple pulse irradiation technique into truncated cone-like structures. The laser induced micro-rough structures (LIMS) possess surface areas which are up to an order of magnitude higher than the original surface. The second phase is deposited on the surface using thin or thick film deposition methods. A key characteristic of surface composites is the formation of a three-dimensional, compositionally and thermally graded interface, which gives rise to improved adhesion of the surface phase. Examples of various types of surface composites such as W/Mo, silica/SiC, diamond/steel, etc. are presented in this paper. The unique properties of surface composites make them ideal engineered materials for applications involving adherent thick film coatings of thermally mismatched materials, compositional surface modification for controlled catalytic activity, and creating adherent metal-ceramic and ceramic-polymeric joints.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference10 articles.

1. 10. Singh R. K. and Fitz-Gerald J. F. , Phys. Rev. Lett. (in press).

2. Growth of thin films by laser-induced evaporation

3. 7. Singh R. K. , Gilbert D. R. , and Fitz-Gerald J. (unpublished research).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3