Influence of implantation of heavy metallic ions on the mechanical properties of two polymers, polystyrene and polyethylene terephthalate

Author:

Swain Michael V.,Perry Anthony J.,Treglio James R.,Elkind Alex,Demaree J. Derek

Abstract

Ion implantation of polyethylene terephthalate (PET) and polystyrene (PS) with various high energy metallic ions at 70 kV and a dose of 3 × 1016 ions/cm2 has been made. Measurements of the mechanical properties of the polymers before and after implantation have been made with an ultra microindentation system using both pointed and a small (2 μm) radius spherical-tipped indenter. The surface regions were also investigated by atomic force microscopy (AFM) and Rutherford backscattering (RBS). Significant differences have been observed between the Ti–B dual-implanted surfaces and those of the Au and W implanted surfaces. For both the PET and PS, the resistance to indenter penetration at very low loads was much greater for the Ti–B dual-implanted surfaces. The estimated maximum hardness and modulus of the implanted materials were 0.3 and 8 GPa for the PET material and 1.4 and 16 GPa for the PS material. The results obtained with the spherical indenter show a gradual decline in effective modulus of the surface with penetration depth, whereas the hardness or contact pressure goes through a maximum before declining asymptotically to the bulk values. The values of hardness estimated for the spherical-tipped indenter are somewhat more conservative than the optimistic estimates with the Berkovich indenter. The improved increase in hardness for the Ti–B dual-implanted PET material scales with the RBS measured increased depth of implantation.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3