Author:
Gao Pengzhao,Rebrov Evgeny V.,Schouten Jaap C.,Kleismit Richard,Cetnar John,Subramanyam Guru,Kozlowski Gregory
Abstract
AbstractNanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by sol–gel method on polycrystalline silicon substrates. The morphology and microwave absorption properties of the films calcined in the 673–1073 K range were studied by using XRD, AFM, near–field evanescent microwave microscopy, coplanar waveguide and direct microwave heating measurements. All films were uniform without microcracks. The increase of the calcination temperature from 873 to 1073 K and time from 1 to 3h resulted in an increase of the grain size from 12 to 27 nm. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2–15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315–355 K was observed in the film close to the critical grain size of 21 nm in diameter marked by the transition from single– to multi–domain structure of nanocrystals in Ni0.5Zn0.5Fe2O4 film and by a maximum in its coercivity.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献