High-Throughput Optimization of Adhesion in Multilayers by Superlayer Gradient

Author:

Grachev Sergey Yu,Cuminatto Coraly,Søndergård Elin,Barthel Etienne

Abstract

AbstractWe used thickness gradients for high throughput optimization of adhesion in film stacks. The idea is based on the so-called superlayer test where a top layer under high compression exerts a load onto the lower interfaces and may cause delamination and buckling. Thus, on one hand, the thickness gradient of the superlayer results in the gradient of the load. On the other hand, the adhesion gradient can be realized by changing the thickness of an adhesion enhancer (or an adhesion reducer). When applied in two perpendicular directions (cross-gradient), the gradient of the superlayer in one direction and of the adhesion enhancer in the other, the plane of the sample represents a map where the line of delamination relates the interfacial toughness to the thickness of the enhancer. In our tests we used Mo superlayers under compressive stress of the order of ˜1.5 GPa on a Si wafer with a native oxide. The adhesion reduction was observed with this methodology when Ag layer up to 10 nm thick was deposited onto the substrate prior to Mo deposition. The delamination occurred at Ag thicknesses starting from ˜6 nm. This thickness of Ag corresponds to the islands coalescence and formation of a continuous film which immediately results in adhesion reduction. The other test was performed with a step gradient of Ti enhancer placed under a 10 nm thick Ag layer in otherwise the same arrangement. A single test showed that 2.8 Å of Ti was sufficient to improve the adhesion between Ag and SiOx by several times.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3