Stresses in Polyimide Films during Cure and Thermal Cycling

Author:

Monk David J.,He Yongxiang,Soane David S.

Abstract

AbstractSeveral electronics packaging schemes involve polymer/inorganic interfaces, including: dual-in-line packages, tape automated bonding and multilayer interconnects. Typically, the thermal expansion coefficients are disparate, so these interfaces often cause high stress. Therefore, a phenomenological model describing transient stresses in spin-coated polyimide films was developed. The model is based on linear viscoelastic theory, and it accounts for shrinkage caused by solvent evaporation and imidization, viscoelastic relaxation, and thermal expansion mismatch. Strains have been defined from three mechanisms: thermal expansion mismatch, chemical curing, and solvent evaporation. Stress is, then, calculated by using the Classical Maxwell Model with one element. The concept of free volume is used throughout the model to estimate viscosity, modulus, and other quantities related to calculating strains. Model predictions for stress as a function of temperature during film cure and thermal cycling are fit with experimental data obtained from a bending beam apparatus.Stress has been estimated by using the thin film approximation of the Timoshenko bilayer stress equation. Experimental data agree well with wafer bowing stress measurements. Although the technique does not yet take into account changing polyimide thickness during curing, the results still show qualitative curing dynamics. This preliminary study revealed good agreement between predicted and observed effects of material properties on stresses developed during cure and thermal cycling. Specificially, an unexpected high in-cure stress was observed for a standard low CTE polyimide. High stresses during curing can be as detrimental to an electronics device as high stress during device operation, so this technique may be useful when screening polyimides and/or prescribing curing schedules. Future work will improve the predictive capability of the model.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference24 articles.

1. 4. Biernath R. W. , Ph. D. Thesis, University of California, Berkeley, 1990.

2. Characterization of Stresses in Polymer Films for Microelectronics Applications

3. 21. Monk D. J. , unpublished notes (Rockwell International, 1986).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3