Self-Assembled Monolayer Films for Nanofabrication

Author:

Dobisz Elizabeth A.,Perkins F. Keith,Brandow Susan L.,Calvert Jeffrey M.,Marrian Christie R.K.

Abstract

ABSTRACTCentral to nanofabrication is the ability to transfer a pattern from an imaging layer to a device or structure. At the smallest dimensions (<20 nm), thin resists or imaging layers have been used exclusively. The transfer of a pattern that is formed in a thin layer resist presents severe technological challenges to resist materials development. A novel approach based on self-assembling monomolecular layer resists is demonstrated with two organosilane films, formed from (aminoethylaminomethyl)phenethyltrimethoxysilane (PEDA) and 4-chloromethylphenyltrichlorosilane (CMPTS). The molecules have separate chemical functionalities for binding to a Si substrate and for promoting chemistry leading to catalysis and the growth of an electroless plated metal film. STM lithographic exposure destroys the ability of the molecule to bind to a catalyst, which initiates an electroless metallization. This forms the basis for a selective imaging and the pattern transfer process. A 25 nm thick Ni layer acts as a very robust etch mask, even as the unmasked regions of Si are etched as deep as 5 μm by reactive ion etching with SF6. With our process 15 nm lines with 3.3 nm edge roughness have been fabricated in the plated Ni and etched into the underlying Si. The development of the resist process and the STM lithography will be described and the resolution of the approach will be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference32 articles.

1. Scanning tunneling microscope lithography: A solution to electron scattering

2. 31 Perkins F.K. , Dobisz E.A. , Brandow S.L. , Calvert J.M. , and Marrian C.R.K. , J. Vac. Sci. Technol., B13, to published (1995).

3. Proximal probe study of self-assembled monolayer resist materials

4. 3 Perkins F.K. , Dobisz E.A. , Brandow S.L. , Calvert J.M. , and Marrian C.R.K. , submitted to Appl. Phys. Lett..

5. Photoresist channel-constrained deposition of electroless metallization on ligating self-assembled films

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3