A Study of the Photoluminescence and Reflectivity Spectra of MOCVD Grown MnSe

Author:

Blasio M. Di,Aigouy L.,Averous M.,Calas J.,Tomasini P.,Haidoux A.,Tedenac J.C.

Abstract

Photoluminescence (PL) experiments at 2K are performed on MOCVD grown MnSe. The precursors used in the growth stage are methylpentacarbonylmanganese and diethylselenide. Pyrolysis of the percursors is realized inside a gradient reactor under a constant H2 flux, between 280-55°TC. The compound is epitaxially grown on various substrates (Si, InP, GaSb, GaAs, ZnTe/GaAs, etc.). On some of these samples the compound presents a zinc blende structure, while in the other samples rock salt formation has been identified. The first substrate is used because of its interest in Si technology, while the others are used because MnSe can be grown in the zinc blende phase for very thin layers. For the first time x-ray diffraction data has allowed us to determine the lattice constant of zincblende MnSe (aMnse (oct)=5.818Å), confirming the close approximation (a ∼ 5.9Å) used from the Zn1-xMnxSe alloy. These compounds have visible Mn++ transitions at 2.12-5eV; other features are also visible at 2.3-4, 2.7, and 3.0eV. The energy gap transition of tetrahedral thin film layers of MnSe is seen for the first time in PL spectra. A temperature dependant PL study is performed on MnSe in the 2-200K range. Reflectivity experiments are used to attempt to identify the internal manganese transitions. A qualitative PL analysis of the samples grown at different temperatures and on different substrates is provided. A Stokes shift is encountered when the results are compared.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3