Author:
Kakeshita Tomoyuki,Ullakko Kari
Abstract
AbstractShape-memory alloys are now widely used because they exhibit a large recoverable strain, which is caused by the conversion of variants in the martensite phase. The conversion of variants is usually promoted by the application of external stress. Recently, however, it was found that the conversion of variants can also be promoted by the application of a magnetic field to induce the martensitic state in ferromagnetic Ni2MnGa shape-memory alloys. Since then, the research in this field has focused considerable attention on applications for using the materials as actuators and sensors because their response to a magnetic field is much faster than their response to heating or cooling. Furthermore, the mechanism of the conversion of variants by the magnetic field has attracted academic interest from many researchers. In this article, we show giant magnetostrictive behavior in three ferromagnetic shape-memory alloys—Ni2MnGa, Fe-Pd, and Fe3Pt—and review the investigations performed so far by many researchers, including the present authors.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献