Abstract
AbstractHydrogen-absorbing alloys with bcc (body-centered-cubic) structures, such as Ti-V-Mn, Ti-V-Cr, Ti-V-Cr-Mn, and Ti-Cr-(Mo, Ru), have been developed since 1993. These alloys have a higher hydrogen capacity (about 3.0 mass%) than conventional intermetallic hydrogen-absorbing alloys. Generally, bcc metals and alloys exhibit two plateaus in pressure–composition isotherms, but the lower plateau is far below atmospheric pressure at room temperature. Many efforts have been made to increase hydrogen capacity and raise the equilibrium pressure of this lower plateau. The crystal structure and morphology of Laves-phase-related bcc solid-solution alloys are reviewed.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献