Abstract
AbstractThe advantages and disadvantages of in-situ straining using both synchrotron x-ray topography and transmission electron microscopy for examining dislocation/grain boundary interactions are compared and examples given of the use of each technique. For x-ray topography, studies on ice polycrystals are discussed. Ice is well-suited for x-ray topographic studies since it has both low absorption and can be produced with a low dislocation density. Stress concentrations have been observed at grain boundaries in ice which are partially relieved by generation of 1/3<1120> dislocations. Interestingly, grain boundary generation of dislocations completely overwhelms lattice generation mechanisms. Examples of transmission electron microscope in-situ straining studies include dislocation/grain boundary interactions in L12-structured and B2-structured intermetallics. Slip transmission across grain boundaries by dislocations gliding ahead of an advancing crack is a principal feature of these studies. A significant advantage of the such studies is their inherently high resolution. However, the dislocation behavior is dominated by the inherent thinness of the specimens.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献