Author:
Schennach Robert,Gupper Andreas
Abstract
AbstractThe growing importance of copper in the semiconductor industry has led to a renewed interest in the properties and growth modes of copper oxides under a variety of conditions. While thermal oxidation of copper has been studied extensively over the last decades, recent surface studies seem to ignore the possible formation of Cu3O2. It has been shown earlier that thermal oxidation of copper leads to multilayer structures, which consist of CuxO, Cu2O, Cu3O2 and CuO, depending on the oxidation conditions. These oxides were analysed ex situ using X-ray Photoelectron Spectroscopy (XPS) combined with depth profiling, Linear Sweep Voltammetry (LSV) and Galvanostatic Reduction (GR). In this work it will be shown that Raman Spectroscopy can be used to follow the formation of the different copper oxides in situ. The experiments were performed using a Raman Microscope with a sample heating extension, which enables in situ copper oxidation in air between room temperature and 300 Δ. Raman spectra were acquired in the range between 3000 Δcm-1 to 150 cm-1. From these spectra one can see that Cu20 is formed between 70 Δ and 130 Δ, Cu302 is formed between 150 Δ and 250 Δ and CuO starts to form at temperatures higher than 250 Δ.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献