Strength-Flaw Relationship of Corroded Pristine Silica Studied by Atomic Force Microscopy

Author:

Zhong Qian,Inniss Daryl,Kurkjian Charles R.

Abstract

ABSTRACTGlass strength is controlled by microscopic surface flaws. Attempts to quantify the strengthflaw relationship for corroded silica fibers have been unfruitful, principally because of the difficulty in identifying the nanometer-sized, strength-controlling flaws on a uniformly corroded surface. In this paper, studies on corrosion of pristine silica optical fibers by HF vapor are presented. The HF-treated fibers exhibit strength degradation and contain well-defined, spatially-resolved surface flaws, which are characterized with an atomic force microscope. Excellent strength agreement is obtained for all chemically corroded fibers when the flaws are modeled as partially embedded hemispheres (i.e., blunt flaws). The implication of these results to the corrosion and fatigue process of silica glasses is discussed, since all previous analyses have assumed the strength-controlling flaws to be sharp.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Commercial Glass Fibers;Fiberglass Science and Technology;2021

2. Strength of Glass and Glass Fibers;76th Conference on Glass Problems;2016-05-11

3. High-Performance Glass Fiber Development for Composite Applications;International Journal of Applied Glass Science;2013-12-12

4. Atomic force microscopy of coated glasses;Fresenius' Journal of Analytical Chemistry;1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3