Microstructural defects in γ-Fe2O3 particles

Author:

Hall Ernest L.,Berkowitz Ami E.

Abstract

The microstructure of three different types of γ-Fe2O3 particles were examined using transmission electron microscopy. These included pure γ-Fe2O3, γ-Fe2O3 that had been surface modified using Co, and γ-Fe2O3 that had been doped with Co. The major internal microstructural defects found in the particles in all of the samples were pores and antiphase boundaries. Some particles also had a very high density of dislocations and low-angle boundaries. In general, the particles could be described as single crystals with symmetric cross section. The structure is based on a tetragonal unit cell, and each particle is divided into antiphase domains in which the c axis is oriented at 90°with respect to adjoining domains. The particles often exhibited very irregular shapes. No effect of Co modification was seen on the internal or surface structure of the particles. The Co-doped particles were found to be smaller in size and contained a lower density of internal defects. The effect of the microstructural defects and morphological irregularities in these particles on magnetic behavior is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3