Raman scattering study of the staging kinetics in the c-face skin of pyrolytic graphite-H2SO4

Author:

Eklund P.C.,Olk C.H.,Holler F.J.,Spolar J.G.,Arakawa E.T.

Abstract

Raman scattering from the ∼ 1600 cm−1 graphitic phonons is used to study the stage evolution of graphite-H2SO4 in the first ∼ 1000 Å of the bulk during electrochemical intercalation. The Raman results are compared to staging kinetics in the deep bulk studied previously by 00/ x-ray diffraction. For low cell currents, which establish quasiequilibrium conditions, the c-face surface of the highly oriented pyrolytic graphite (HOPG) in contact with the reactant rapidly changes stage index to n − 1 just as the bulk completes stage n. We conclude that the intercalant must cross the c-face plate boundary of the HOPG, probably entering at either grain boundaries, microcracks, or steps in the plate surface. During stage transitions, the Raman lines are observed to remain Lorentzian in shape, with constant width, indicating that an ordered stage n − 1 compound grows at the expense of an ordered stage n compound. In studies of partially submerged HOPG plates, the surface above the acid level is found to stage last, although the plate surface just below the acid level stages first. Lateral diffusion of the sulfate anions from regions below, to regions above the acid level, is apparently impeded for reasons that are not understood. During portions of the electrochemical reaction requiring only hydrogen rearrangement in the intercalate layers (“overcharging”), Raman spectra taken from above and below the acid level are observed to evolve in concert, indicating the protons are not similarly impeded.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference24 articles.

1. 24 Oik C. H. and Eklund P. C. (private communication).

2. 22 Kamitakahara W. A. , Eklund P. C. , and Zarestky J. L. (private communication).

3. 12 Giergiel J. , Ph.D. thesis, University of Kentucky, 1982.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3