Kinetic Roughening of Interfaces and Mixing in Alloys Under Shear or Irradiation

Author:

Bellon P.,Partyka P.

Abstract

AbstractBoth irradiation and plastic deformation can induce the stabilization of non-equilibrium phases in alloys. A simple kinetic atomistic model is used for describing these two situations, when the external forcing is acting in competition with thermally activated diffusion. Monte Carlo simulations are performed on alloys with positive heats of mixing. Both situations share common features : random solid solutions are stabilized at high enough forcing intensity (i.e. irradiation flux or shearing rate), while at moderate forcing intensities interfaces exhibit kinetic roughening. However, major differences are observed : alloys under irradiation undergo dynamical transitions between steady-states, such as a dynamical roughening transition at interfaces and a precipitation-dissolution transition in the bulk ; in alloys under shear such transitions are not observed ; instead the steady-state microstructure of a two-phase alloy is continuously refined on increasing the shearing rate. These differences originate from the size of the perturbation induced by the external forcing : the perturbation is of microscopic size for alloys under irradiation, while it is of macroscopic size for alloys under shear. Results obtained for the shearing case provide a rationalization scheme of ball milling experiments showing chemical mixing of immiscible elements. The fact that such systems consist of nanograins should also contribute to prevent the existence of 1st order phase transitions on varying the milling conditions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The influence of stress during ion beam mixing;Materials Science and Engineering: A;1998-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3