Identification of Cleavage Planes in an Al3Ti-Base Alloy by Electron Channeling in the SEM

Author:

George E. P.,Porter W. D.,Joy D. C.

Abstract

ABSTRACTSelected area electron channeling patterns were used to identify the cleavage planes in a polycrystalline Al3Ti-base alloy having the L12 structure. In order to do this unambiguously in the scanning electron microscope (SEM), one needs to know that the cleavage facet from which any given channeling pattern is obtained is indeed normal to the electron beam. We accomplished this by utilizing a recently-developed technique in which an optical microscope with a short depth of focus is inserted in the SEM column and used to measure the elevations of several points on the cleavage facets. By appropriately tilting and rotating the sample, and using the optical microscope to measure elevations, it was possible to orient the facets normal to the beam. The cleavage planes in a cast and extruded alloy having an equiaxed grain structure were compared with those in a directionally-solidified (DS) alloy of the same composition. Of the eight cleavage facets examined in the DS material, six were of the {110} type and two were of the {111} type. Of the six facets examined in the cast and extruded material, two each were of the {110} and {111} types, and one each were of the {100} and {013} types. Although it cannot be said that all possible cleavage planes have been identified in this alloy, the availability of several low-strength cleavage planes apparently exacerbates its brittleness.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. Cleavage fracture in an Al3Ti-based alloy having the Ll2 structure

2. 9. Porter W. D. and Oliver W. C. , Presented at the TMS-AIME Annual Meeting, Phoenix, AZ, (1988).

3. Rapidly solidified Al3Ti-base alloys containing Ni

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scanning Electron Microscopy;Materials Science and Technology;2006-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3